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Resumo

O matematico Gregory Galperin desenvolveu, em seu artigo “Playing Pool with 7”7, um incrivel
método para calcular os digitos do niimero 7, com precisao arbitraria, fazendo uso de um sis-
tema elementar da Fisica em Mecanica Classica: colisoes elasticas em uma dimensao. Inspirado
no trabalho de Galperin, Adam Brown demonstrou que existe um isomorfismo entre o sistema
fisico usado por Galperin e um famoso algoritmo quéantico de busca: o algoritmo de Grover.
O presente projeto visa a entender o porqué desse isomorfismo. Desenvolvemos os resultados
de forma original demonstrando, explicitamente, como o isomorfismo entre esses dois sistemas
surge a partir de seus espacos de configuracao.

Palavras-chave: Colisoes eldsticas. Espacos de configuracao. Computacao Quantica. Algo-
ritmo de Grover.
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1 Introducao

O bidlogo Magnus Equist, ao estudar como nés, humanos, identificamos beleza nas coisas,
constatou que essa habilidade estd fortemente ligada ao nosso reconhecimento de padrées (1),
o que em Matematica associamos a simetria. Dai, emerge uma das nossas capacidades mais
poderosas nas ciéncias: a de conseguirmos enxergar em coisas a priori distantes relagoes que as
conectam intimamente. Nesse sentido, a Fisica e a Matematica, muitas vezes, inspiram-nos de
formas que parecem boas demais para ser verdade. A riqueza de aprendizado, conhecimento
e fascinio que surgem disso, suscitam a concepg¢ao da ciéncia como nao somente 1util, mas
intrinsecamente bela. O nosso trabalho visa estudar a nao tao ébvia relagdo entre um sistema
simples de bilhar classico, um algoritmo de busca quantica e o nimero 7.

O ntimero 7 é, provavelmente, o néimero irracional mais importante da Matematica e
obté-lo sempre foi um desafio. Mateméaticos desenvolveram métodos da Aritmética (e.g. séries
geométricas) a Computacdo (e.g. método de Monte Carlo) para calcular esse nimero, e tam-
bém alguns bem curiosos como o método das agulhas de Buffon (2). Entretanto aquele descrito
na Sec.2 deste trabalho é um dos menos ortodoxos dentre todos esses. Tal método foi desen-
volvido pelo matematico Galperin (3), ele utilizou um sistema bastante familiar para qualquer
fisico: duas bolas colidindo elasticamente entre si e com uma parede, também conhecido por
pesquisadores de sistemas dinamicos como um problema de bilhar.

A. B. Katok, coloquialmente, disse que os problemas de bilhar sdo uma espécie de play-
ground para fisicos e matematicos. Nos podemos entender essa afirmacao de um ponto de vista
Iidico - que nao deixa de estar correto, ou de um ponto de vista mais sério, entendendo que ele
se referenciou a esse tipo de sistema como um “solo de testes” para hipdteses, conjecturas e re-
lagoes (4). Foi nessa brincadeira que Galperin concluiu que, desse problema unidimensional de
colisdes, poderia-se aferir os digitos de 7, com uma precisao arbitraria, simplesmente contando
o numero de colisdes no sistema.

Como se nao bastasse esse interlidio bastante exdtico, o fisico Adam Brown propos um
isomorfismo entre esse sistema de bilhar e o algoritmo quéantico de busca (5). O que nés
fizemos, portanto, foi concatenar todos esses assuntos num sé lugar. Inspirados no trabalho
(6), derivamos o resultado que comprova como o nimero 7 surge do sistema de bilhar definido
por Galperin; demonstramos, com uma anélise original, como funciona o algoritmo de Grover;
e, ao final, tracamos discussoes a respeito de ambos os sistemas, apresentando, dentre outras
coisas, uma proposta de revisao a um dos resultado obtidos por Adam Brown.

2 As bolas de bilhar

Um sistema de bilhar é um sistema de particulas, numa regiao limitada, colidindo entre
si e com as fronteiras dessa regiao. Esse nome é, de fato, inspirado no famoso jogo de bilhar de
mesas retangulares, mas pode-se elaborar tal sistema de maneira mais abstrata, variando-se a
dimensao e forma dessa “mesa” e a quantidade e tipo de bolas em jogo.

2.1 Sistema unidimensional de colisoes elasticas

O sistema tratado aqui serd unidimensional. Ele é constituido de duas bolas diferentes,
uma com massa M e outra com massa m, em que M > m; e de uma parede que considera-se

"Discutivelmente, o niimero de Euler (e) divide o pédio com ele.
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ter massa infinita. Para facilitar a comunicac¢ao, iremos nos referir as bolas como “bola M” e
“bola m”, respectivamente.

\/

Figura 1: Sistema de bilhar 1D de dois corpos. Fonte: Elaborada pelo autor.

Embora, na Fig.1, as bolas possuam dimensao, isso ¢ apenas ilustrativo - consideremo-las
particulas pontuais. Todas as colisoes sao perfeitamente elasticas, o sistema como um todo
encontra-se em repouso a partir de um referencial inercial e ndo existe qualquer tipo de atrito
ou dissipagdo no problema (7). O sentido positivo das velocidades é da esquerda para a direita.
Por mais simplificada que essa construcao possa parecer, ela sera suficiente para depreender de
tudo que precisamos.

Num primeiro momento, o nosso objetivo é identificar como esse sistema se relaciona com
o ntmero 7. Galperin abordou tal problema’ num artigo que veio a ptblico em 2003 (3), no
qual ele respondeu a seguinte pergunta: dadas duas bolas inicialmente sem velocidade, como as
ilustradas na Fig.1, ao ser concedida uma velocidade inicial positiva v a bola M, qual o nimero
de colisbes maximo que este sistema tera? Ele concluiu que

k= #colis()es = |7 % (1)
m
onde # denota nimero e |a| denota o menor inteiro mais préximo de um ntimero real a.
Veja desse resultado que se, por exemplo, M/m = 100, sendo d um nimero natural™, o
numero de colisdes no sistema sera os digitos de 7, sem a virgula, até a d-ésima casa decimal.
Dedicaremo-nos a provar o resultado da Eq.(1) ao longo de todo o resto da Sec.2.

2.2 Evolucao do sistema de bilhar

Como construido, o sistema envolve dois corpos movendo-se linearmente no espago, livres
para colidir entre si e com uma parede. Essa construcao é completamente classica e, como as
colisdes sdao perfeitamente eldsticas, duas leis de conservagao basicas devem ser respeitadas, a
de energia e a de momento linear:

1 1
§Mv2 + imu2 = F = constante, (2)

Mv + mu = p(t), (3)

em que v é a velocidade da bola M, e u, a velocidade da bola m. O fato de o momento linear
ser dependente do tempo sera explorado, com algum detalhe, na Sec.4.2. Por ora, busquemos
modelar o comportamento do sistema.

"Veja também as Refs. (8, 9) para mais detalhes.
“*Considere 0 um ntmero natural.



No espago de configuracao das velocidades, a equagao da energia configura uma elipse,
mas guiados pela busca de simplicidade, é conveniente projeta-la numa circunferéncia; como
ilustrada na Fig.2, a seguinte mudanga de coordenadas vem a calhar: y = y/mu, z = Vv Mu.
Com essa parametrizacao, as leis de conservacao tornam-se

1
5(3:2 + 9?) = constante, (4)

onde p(t) = p(t)//m.

Sl

. 1 .
Muv* + 37,”12 — constante

<=
A\

(2% + y*) = constante

Figura 2: Mudanga de coordenadas y = y/mu, x = v/ Mv. Fonte: Elaborada pelo autor.

Os estados de velocidades acessiveis ao sistema estao sobre a circunferéncia, cujo compri-
mento é fixo para uma dada energia, como visto na Eq.(2). Inicialmente, a bola de massa M
move-se com uma velocidade v constante em direcao a bola de massa m, que se encontra com
velocidade nula. O ponto sobre a circunferéncia na Fig.3 representa o estado do sistema no
plano zy.

py = Vmu

A
\ o = Vil

Figura 3: Estado inicial do sistema (¢ = ;). Fonte: Elaborada pelo autor.

Sendo a velocidade das bolas, apds a colisdo, v' e v/, pela conservagao de energia, temos:

1 1 1 1
§M02 + imu2 = §M(v’)2 + §m(u’)2,



e pela conservacao do momento linear, temos:

Muv +mu = Mv' +ma'.

A solucao desse sistema para u' e v' é

= (B ()

= () (42

ou, na forma matricial, com r = M/m

(4)=r (). ®)

A operagao R(r) na Eq.(8), assim, representa a colisao das bolas uma com a outra no
sistema fisico. Apds a primeira colisdo, ambas estardo movendo-se para a direita (Fig. 4 a
direita). Devido ao vinculo da energia, o ponto que representa o estado do sistema no espago
de configuracao devera continuar sobre a circunferéncia, mas onde exatamente? Bem, basta
nos lembrarmos do vinculo do momento linear, que, no plano zy, é dado pela reta da Eq.(5).

Colisoes entre as bolas deixam o momento total p(t) inalterado, isto é, p(ty) = p(t1).
Portanto, o préximo ponto deve estar sobre a mesma reta que o primeiro. Tendo o coeficiente
angular fixado, resta-nos uma tunica alternativa (Fig. 4 a esquerda).

/‘
N

A Y

Figura 4: Sistema apds a primeira colisao (¢ = t;). Fonte: Elaborada pelo autor.

J4 que M > m, constata-se que u' > v’, de forma que a proxima colisao da bola m
certamente serd com a parede . Como estamos considerando uma parede de massa infinita, o
momento linear da bola m invertera seu sentido, passando de mu’ para —mu', o que também
altera o valor do momento linear total do sistema, i.e., p(t1) # p(t2). Algebricamente, temos:

“Para ver que u’ > v’, subtrai-se as Eqs. (6) e (7), respectivamente; assim: ' —v' =v —u >0 = o' > v'.
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()= ) ()
(ﬁﬁf)ﬂ(ﬁﬁ). 9

A operagao S na Eq.(9) representa uma colisao da bola m com a parede. No espago de
configuragao, isso se traduz numa reflexao do estado sobre o eixo x, conforme mostrado na Fig.

/‘
N

Figura 5: Sistema apds a segunda colisao: bola m com a parede (t = t3). Fonte: Elaborada
pelo autor.

Assim,

ul) LU=2)
( ) ) = SR(r) < V-2 ) :

Esses sao os dois tinicos tipos de colisao possiveis nesse sistema: da bola M com a bola m e
da bola m com a parede. Note que, na préxima colisdo bola-bola, a trajetéria no espago de
configuragao serd descrita por uma outra reta com o mesmo coeficiente angular da primeira, mas
deslocada um pouco a esquerda, justamente pela variagdo no momento linear total do sistema
que aconteceu na colisdo bola-parede (vide Eq.(5)). Dessa forma, a evolugao do sistema pode
ser descrita por sucessivas aplicagoes de R(r) e S no estado inicial

( 2‘8 ) _ SR()SR(r)..SR()SR(r) ( gﬁﬁi ) (10)

até o ponto em que 1) e vV sejam ambos negativos (bolas indo para a esquerda no espaco
real) e [v)| > |u?)|, garantindo-nos que ndo haverd mais nenhum tipo de colisdo no sistema.
Chamaremos este estado de estado terminal.

2.3 Contagem das colisoes

A construgao da Sec.2.2 deve nos levar ao nimero de colisdes k£ dado na Eq.(1). Como
os pontos na Fig.6 representam os estados assumidos pelo sistema, a quantidade deles menos 1
(da configuracao inicial) nos da4 o ntimero de colisdes totais que ocorreram.

11



#estados —-1= #colisées = #arcos correspondentes a 6+ (11)

As retas transversais possuem o mesmo coeficiente angular, sdo paralelas entre si; assim
como as verticais, obviamente. Logo, o angulo formado entre essas retas é sempre o mesmo (6),
tais quais os arcos de circunferéncia que eles subtém, conforme ilustrado na Fig.6. Dada a rela-
¢ao da Eq.(11), podemos contar o nimero de colisoes a partir do nimero de arcos subtendidos
por 6. Como é mais facil trabalhar com angulos a partir do centro da circunferéncia, faremos
uso do Teorema do angulo inscrito.

Figura 6: Angulo formado entre as retas da Eq.(5) e a vertical. Fonte: Elaborada pelo autor.

Teorema 1 (Teorema do angulo inscrito) Numa circunferéncia, a medida do dngulo cen-
tral é igual ao dobro da medida do angulo inscrito que subtende o mesmo arco.

Vemos na Fig. 7 uma representacao do Teorema 1.

AV

Figura 7: Ilustracao do Teorema do angulo inscrito. Fonte: Elaborada pelo autor.

Isso significa que, a cada colisao, cobre-se na circunferéncia do espago de configuracdo um
arco proporcional a 26, conforme vimos nas Figs. 4 e 5. Uma vez que a bola de massa M passa
a ter uma velocidade negativa (estados passem ao segundo e terceiro quadrante no espago de
configuragao), ela ndo pode voltar a ter sua velocidade aumentada positivamente, pois, nem a
parede, nem a bola m podem contribuir para tal acréscimo, ja que estao sempre a direita da

12



bola M. Em outras palavras, no espaco de configuracao, o estado s6 pode caminhar da direita
para a esquerda, sempre cobrindo novos arcos correspondentes a 26.

Entao ha um limite para a evolucao do sistema - ele deve chegar, em algum momento,
num estado terminal, j& que o comprimento da circunferéncia é finito. A razao para isso é
puramente geométrica e nos trard justamente a resposta da nossa pergunta: quantas colisdes
teremos no sistema até que ele alcance o estado terminal? Equivalentemente, quantos arcos
proporcionais a 20 podemos somar antes que o valor dessa soma supere 27 (comprimento da
circunferéncia)?

20420+ ... 4+20 <21 = kO <. (12)

Por exemplo, se 6 fosse 0.01, k = 314 respeitaria a inequagao (12), ja& k = 315 a violaria. O
numero de colisoes do sistema serd, portanto, o maior k£ que nao viola essa desigualdade.
O célculo de 6 é simples, basta lembrar (vide Eq.(5)) que o coeficiente angular da reta

transversal a circunferéncia é —\/%. Sendo € o angulo de referéncia,

1 m m
_ _/m _ S 1
tan 0 coof ang = tanf i 0 = arctan i (13)

A tabela abaixo sumariza esse resultado para alguns valores de |/}

Tabela 1: Valores de 0 para diferentes razoes M /m.

Razao entre as massas (M:m) Férmula para 6 (arctan \/ XZ{) Valor de 6

100:1 arctan 110 0.0996686524...
10000:1 arctan 1(1)0 0.0099996666...
1
1 1 tan —— .
000000 arctan 1000 0.0009999996
1
1 1 t .
00000000 arctan 10000 0.0000999999

Fonte: SANDERSON (6).

Pela Tabela 1, fica claro que arctanx =~ x quando z é muito pequeno - justamente o
nosso caso. Perceba que, a medida que M aumenta, a aproximacao melhora ainda mais. Uma
maneira de justificar algebricamente essa aproximagao é pela expansao de Taylor do arctan x

1 1
arctanx = x — §x3 + 5x5 + ... = arctanz =z — O(2?),
significando que quando z < 1 haverd apenas um erro de ordem ctubica a aproximacao.

Assim, dado que k£ é o nimero de colisdes que acontecem no sistema, uma vez que 6 =
arctan \/m/M R~ \/m/]w7 temos

k' M<7T,

13



ou seja, o maior k que nao viola essa desigualdade, de fato, é descrito pela Eq.(1). Para o caso

1 d
especial em que M/m = 1004, encontra-se k (10> < . O maior inteiro k£ que nao satura esta

desigualdade sera igual aos digitos de 7 até a d-ésima casa decimal, como queriamos demonstrar.

3 Os algoritmos quanticos

Um algoritmo é uma sequéncia finita de acoes executaveis que visam chegar a solucao de
um determinado tipo de problema (10), sendo os algoritmos quénticos aqueles que se utilizam
de principios da teoria quantica para chegar a essa resposta. Esta definicao é geral, aqui,
no entanto, ateremo-nos a um problema especifico: realizar uma busca numa base de dados
aleatoria. Por exemplo, imagine que gostariamos de encontrar o caminho mais curto entre duas
cidades A e B. Um algoritmo para encontra-lo seria: percorrer todas as N rotas possiveis,
enquanto armazena-se numa memoria as distancias de cada uma delas para, ao fim, compara-
las e determinar a mais curta. Essa descricdo bem ilustra que um algoritmo classico leva,
invariavelmente, algo da ordem de N iteragdes (O(N)) para encontrar o caminho 6timo entre A
e B. No entanto, existe um algoritmo quéntico, idealizado por Lov Grover (11), que se propoe
a solucionar este problema em O(v/N) iteracoes.

O potencial do algoritmo de Grover (como este é conhecido) em solucionar problemas de
busca com uma aceleracao quadratica se comparado ao seu equivalente classico, torna-o digno
da nossa atencao. Vejamos como esta melhora é possivel.

3.1 O algoritmo de Grover

Dentre as varias maneiras de se fazer Computagao Quéntica (10, 12), fundamentaremos
a analise a seguir num modelo bastante simples: um vetor |1), que encapsula um certo estado
inicial, terd sua evolucao dada por aplicagoes sucessivas de operadores unitarios U; sobre ele
até que chegue num estado final |¢x); ou seja, |¢) = Uy ... Uy [¢). Os vetores |1)) pertencem a
um espaco de Hilbert de dimensao N, e U; sao operadores associados a esse espago.

O problema de busca pode ser definido assim: numa base de dados (X) de N elementos,
queremos encontrar n dos quais sao solugées do nosso problema. Claramente, n < N. Se a
solugao for tinica, n = 1. Para sermos o mais democraticos possivel, digamos que o nosso estado
inicial, representando os elementos do conjunto X, é uma superposicao igualmente balanceada
nas amplitudes de probabilidade de todos os possiveis estados {|z)}, que formam uma base
ortonormal. Cada estado dessa base mapeia um tunico elemento do conjunto de busca. Assim,

1 N-1

¥) = N wZ:O ) - (14)

Grover propos que atuacao iterativa de dois operadores é suficiente para resolver esse pro-
blema. O primeiro operador é chamado de ordculo. Digamos que a solu¢ao do nosso problema
seja descrita por |s), o que o ordculo faz é inverter a amplitude de probabilidade deste estado
dentro de |¢)). Sendo I a identidade, o operador que descreve essa agao é

U, =1-2]s)(s|. (15)

14



A segunda operacao é a chamada inversdio em torno da média. Ficara claro o porqué desse
nome na Sec.3.2, mas - por enquanto - vamos nos ater a sua forma operacional

Uf =2[) (]~ I (16)

Para que fique mais explicito o funcionamento do algoritmo de Grover, facamos o exemplo
de N = 8. Classicamente, esperariamos, em média, N/2 ~ 4 iteragoes até que a solugao fosse
encontrada (10); quanticamente, esperariamos ~ VN ~ 2, isto é, apenas duas itera(;ées!*
Facamos o cdlculo do caso quéntico. A Eq.(14) para N = 8 resulta no estado

1 1 1 1 1 1 1 1
W>:%m)+%|1>+ﬁ|2>+ﬁ’3>+ﬁ|4>+%\5>+%|6>+ﬁ|7>7

retratado esquematicamente na Fig.8.

1.0

0.8

0.6 1

0.4 1

Amplitude de probabilidade

0.2 1

0.0 -

Estados

Figura 8: Estado inicial do algoritmo de Grover para N = 8. Fonte: Elaborada pelo autor.

Busquemos, por exemplo, o valor |s) = [3). Pela Eq.(15), vé-se que Us; = I — 23) (3|, e entdo

1

1 1 1 1 1
Ul ) = 752 553+ gt sl e+ o

)+ )+

7)

1 1
0 1
2¢§| 2\/§|

Us|w>=\w>—235|3>.

Estado este representado na Fig.9.

"Vocé pode argumentar (com razdao) que V8 é muito mais préximo que 3 do que é de 2. No entanto,

~ . . ~ . 7T
mostraremos na se¢io seguinte que o algoritmo de Grover retorna a solugdo com boa precisdo para ~ {Z\/ N J .

15
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0.8 1
0.6 1

0.4
N I I I I I I I
. I

0.4

Amplitude de probabilidade

Estados

Figura 9: Estado apos a primeira aplicacao de U,. Fonte: Elaborada pelo autor.
A préxima operagao é Ulj, definida na Eq.(16),

AT [|w> 2519
= 2NN = 575 10 I3~ 1) + 5 )

1/v8
1 1
3 |9) + NG 13) .

Mas note que |¢) possui uma componente |3). Escrevendo a Eq.(14) para N = 8 e separando
essa componente, temos o estado

UyUslp) = 3 2\/—Z| +F 3) + \/—|3>
T#£3

N 1 5

Uy Usly) = mZW*‘mB%

representado na Fig.10.

Essas duas operagoes, nessa ordem, formam o que chamamos de iteracio de Grover (G),
de maneira que G = UljUs. Uma vez ilustrada a amplificagdo da probabilidade de obter o
estado desejado, faremos os calculos da segunda iteragdo de Grover com menos detalhes. As
etapas s&@o as mesmas, primeiro, atua-se o oraculo

UG = 15 3 ) - 59

1#3
e, em seguida, a inversao em torno da média

16



1.0

0.8 q

0.6

0.4

Amplitude de probabilidade

0.2 1

0.0 -

Estados

Figura 10: Estado apds a primeira aplicacao de UwL- Fonte: Elaborada pelo autor.

:1:753

11
UEU.G 1) =~ Sl +

G* |[y) = )=

1 1 11 1 1
5 eI s s )~ s — s ) = s 16— T
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Figura 11: Estado apods a segunda iteracao de Grover. Fonte: Elaborada pelo autor.

Se medirmos o estado G? [b) (ilustrado esquematicamente na Fig.11), obterfamos o ele-
2

mento |3) com probabilidade = 121/128 ~ 94,5%. Mesmo para poucos g-bits , o algo-

11
8v/2
e g-bit é a unidade bésica de informagao quantica, tal qual o bit é a unidade bésica de informagao classica.

Os @-bits formam uma base num espago de Hilbert e nos permitem descrever, por exemplo, um estado genérico
de 1 g-bit como uma superposicao do tipo |1/) = a/[0) + 8[1), em que |af* + |8 = 1
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ritmo de Grover responde corretamente a busca com boa margem, a probabilidade de acerto é
17 vezes maior que a de erro, e a precisao de acerto s6 melhora a medida que aumentamos N.

3.2 Uma andalise geométrica

Voltemo-nos agora ao nosso objetivo central: encontrar o isomorfismo entre o sistema
de bilhar e o algoritmo de Grover. Simularemos uma busca numa base de dados X com N
elementos, o estado da Eq.(14) encapsula essa base de dados. Para facilitar nossa anélise,
consideraremos dois subconjuntos: S, com n elementos (as solugées da busca), e W, com N —n
elementos (nao-solugoes da busca), tal que X = S U W. Respeitando a normalizagao, define-se
os estados que representam uma superposicao dos elementos de S e W, respectivamente.

Z |z) ; (17)

LBGS

jw) = ﬁglew (18)

Usando estes resultados na Eq.(14), temos

Py =[x ls)+

Inspirados no desenvolvimento feito por Kaye, et al. no livro (12), descreveremos as amplitudes
de probabilidade em termos de um angulo

= fuw). (19)

n
i =,4/— 2
sin 6 N (20)

de maneira que

|1) = sinf |s) + cos b |w) . (21)

Para nos auxiliar nas contas, construiremos um vetor ortogonal |¢) a |¢), dado por

|¢) = cosf|s) — sinf |w) (22)

Também nos ajudard definir um espago de coordenadas ortonormal em |w) e |s). Nesse
espaco, podemos delinear uma circunferéncia de raio unitario fazendo alusao ao fato de a
probabilidade estar normalizada a 1. Isso implica que qualquer vetor de estado nesse espaco
deve estar restrito de tal circunferéncia. Na Fig.12, ilustra-se o espaco de configuragdo que
descreve esse sistema.

Perceba das Eqgs. (21) e (22), que {|©),|¢)} também forma uma base ortonormal, de
maneira que podemos alternar nossa descrigao entre esta e a base {|w) ,|s)}, visto que

|w) = cosf|) —sinb |p); (23)
|s) =sinf [¢) + cosb |¢) . (24)

18



als)

afw)

Figura 12: Grafico do estado inicial no algoritmo de Grover. Nos eixos, o é uma constante
maior que um (a > 1) posta apenas para melhorar a escala do grafico. Fonte: Elaborada pelo
autor.

Usaremos esse “truque” de alternar entre as bases para facilitar as contas. Lembre-se, o que

nos interessa é saber como |¢) evolui. Vejamos o que acontece em cada etapa do algoritmo.
Primeiro, na aplicagao de U:

Us ) = —sinf|s) + cos 0 |w) = cos (20) [¢) — sin (20) |¢) .

als)

oy

1 0 )g o ‘w>

U ¥)

Figura 13: Primeira aplicacdo de Uy sobre o estado inicial. Fonte: Elaborada pelo autor.

Na Fig.13, vé-se que, no espago de estados, U, faz uma reflexdo em torno do eixo |w).
Se nds olharmos para as definigoes dos operadores nas Eqs. (15) e (16) e comparamo-los, fica
claro que, na base {|v),|¢)}, qu faz uma reflexao em torno de |¢), por isso o nome “inversao

em torno da média”. Assim, quando calculamos Uj Us |¥), obtemos (esquema na Fig.14):

Uy Us 1) = cos (26) [¢) + sin (260) |¢) = sin (36) |s) + cos (36) |w)
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Figura 14: Aplicacao de U$ sobre o estado Uy [1). Final da primeira iteragdo de Grover. Fonte:
Elaborada pelo autor.

A combinagao dessas duas reflexdes é uma rotagdo. Assim, podemos induzir que cada
iteracao de Grover rotaciona em 26 o vetor de estado. Destarte, a forma geral do estado apods
k iteragoes de Grover é

(U5 Us)* [ib) = cos (2k0) [¢) + sin (2k0) |¢) ; (25)
(G)E [p) = sin ((2k + 1)) |s) + cos ((2k + 1)8) |w) . (26)

O objetivo do algoritmo ¢é fazer com que o estado inicial tenda o tanto quanto possivel a
solucdo, ou seja, queremos (G)* [¢p) — |s). O menor k que faz isso é aquele que torna o seno

7r
na Eq.(26) o mais préximo possivel de 1, por isso, é necessario impor o vinculo (2k + 1)0 — 7

Assim,
1 1 1
Gherpel 5 pet Lem L1 7
2 40 2 7 4 arcsin \/% 2
Como sabemos, para x > 0, temos:
! > 1. ;
x — arcsinzx

que tende a igualdade para = pequeno. Assim, o maior k que ndo viola a desigualdade (27)
também é

™ [N 1
’“:L n—zl %)

Limitamos k inferiormente pela razao logica de que queremos nos aproximar ao maximo da
solugao, mas sem correr o risco de passar dela. Assim, as iteracdes de Grover para um caso em
que k = 3 funcionam como ilustrado na Fig.15.
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Figura 15: Iteracoes de Grover para k = 3. Fonte: Elaborada pelo autor.

4 Tudo mais...

Discutamos as simetrias e alguns detalhes importantes de ambos os sistemas fazendo as
consideracoes necessarias.

4.1 O bilhar de Grover

Mapeemos o problema de bilhar no algoritmo de Grover e tentemos enxergar o isomorfismo
entre eles de forma nitida. Algumas diferencgas surgem de como lemos o problema, por exemplo,
o algoritmo de Grover nao conta a primeira colisdo, ele comega a partir dela. Outra distingao
estd no método de contagem, ja que as iteracoes de Grover correspondem a duas colisoes
simultaneas. Se ao invés disso contdssemos o nimero de operagoes unitarias Us e Uj mais a

condicdo inicial no algoritmo, terfamos k = 2k + 1 na Eq.(26). Assim ko — g e, portanto

~ T |N
k= {2 ‘ , (29)

n

com k sendo o ntimero total de estados durante todo o processo. Note a semelhanca da Eq.(29)
com a Eq.(1). A diferenga desse fator 1/2 vem do fato de, no algoritmo de Grover, percorrermos
apenas metade do espago de estados. Se modeladssemos o nimero de operagoes no algoritmo
de Grover pelas colisdes no sistema de bilhar, deveriamos parar no momento em que a bola M
transferisse toda a sua energia para a bola m, ou seja, na iminéncia de o sinal da velocidade
da bola M se tornar negativo. Isso corresponde exatamente a percorrer metade do espago
de configuragdo, dai o fator 1/2. Veja que nao ha problema em parar em metade do espaco
de configuracao porque o critério de parada no algoritmo de Grover nao é consequente, mas
impositivo. Ilustra-se na Fig.16 a evolugdo dos dois espacos de configuragao pelo sistema de
bolas de bilhar.

Analisando os detalhes dessa relagao, conseguimos construir um isomorfismo entre cada
entidade fisica dos dois sistemas, como mostrado na Tabela 2.
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-
N,

(b) Primeira colisdo

als)

)

S

(c) Segunda colisao, reflexdo na parede.

(d) Terceira colisdo geral, segunda entre as bolas.

als)

| /

(e) Evolugao genérica do sistema.

Figura 16: Comparacao entre os espacgos de configuracao sob a perspectiva do problema de
bilhar. Fonte: Elaborada pelo autor.
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Tabela 2: Mapa do isomorfismo entre o sistema de bilhar e o algoritmo de Grover.

Problema de bilhar Algoritmo de Grover
Massa da bola maior: M Numero de elementos na base de dados: N
Massa da bola menor: m Numero de solu¢oes na base de dados: n
Colisao entre as bolas: operagao R(r) Inversao em torno da média U$
Colisao bola m - parede: operagao S Oraculo U
Alternancia entre colisao bola-bola e bola-parede Alternancia entre U, e Uzj
Conservacao da energia cinética Conservacao da probabilidade
Conservacao do espaco de configuracao Unitariedade das operacoes
Movimento puramente horizontal Funcgoes de onda puramente reais
Ordem das colisdes importa Us e Ulj nao comutam

Fonte: Elaborada pelo autor.

4.2 Discussoes

e Momento linear total varidvel

Quando consideramos, na elaboragdo do sistema de bilhar (Sec.2.1), que a parede tem
massa infinita, ela acaba por funcionar como uma “ladra de momento linear” do sistema, uma
vez que, a cada colisao bola-parede, o momento linear total diminui. Veja que “aumentar” ou
“diminuir” aqui depende apenas de uma convencao. Se o sentido de orientacao do sistema fosse
invertido, a parede seria uma “geradora de momento linear”, o que nao mudaria o problema
como um todo - o que interessa ¢ a variagdo do momento linear total em modulo.

o Critério de parada

Pode nao ser tao 6bvio que o sistema de bilhar va chegar a um estado terminal, como
foi afirmado na Sec.2.2. A principio, existem trés possibilidades: 1) a velocidade da bola M é
sempre positiva e a bola m oscila, indefinidamente, entre a bola M e a parede; 2) o sistema
evolui até que a bola M passe a ter velocidade negativa, enquanto a bola m continua oscilando
entre ela e a parede, infinitamente; 3) o sistema chega a um estado terminal em que ) e )
sio ambas negativas e [v¥| > |u"|, garantindo que elas ndo vio mais se tocar.

As situagoes 1) e 2) implicam um nimero infinito de colisdes, enquanto 3), um ndimero
finito. Para nossa anélise, usemos nas Eqs. (2) e (3), r = M/m, E = 2E/m e p = p(t)/m,

w4 rv*=F u+rv=7m

A solucgao deste sistema para u e v é

_ﬁj:\/r(Er—i—E’—ﬁ?) _rﬁj:\/r(ET+E—]52)
a r+1 v r(r+1)

u
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Como as velocidades devem ser valores reais, ha um limite para o quanto p pode aumentar:

P < E(r+1) = |p| < 2E(M +m). Este resultado descarta a possibilidade 1), pois,
para que ela fosse verdade, a bola m teria sua velocidade, em mddulo, aumentada a passos
cada vez maiores, fazendo o momento linear total do sistema, também em mddulo, aumentar
indefinidamente.

Embora 2) ndo possa ser descartada apenas com esse argumento (|p| poderia tender
assintoticamente ao seu limite superior), ja sabemos com certeza que o sinal da velocidade da
bola M ira inverter em algum momento, ou seja, o estado vai passar para o lado esquerdo do
espaco de configuracao. Dal podemos facilmente usar o argumento ja apresentado na Secao
2.3 de que, dado que o sistema evolui a rotagoes de 26 no espaco de configuragdo, como o
comprimento da circunferéncia é finito, o nimero de colisdes também deve ser finito. Isso
exclui a possibilidade 2). Logo, o sistema evoluird segundo 3). No algoritmo de Grover, o
critério de parada é imposto. Nos escolhemos parar a evolugao do sistema apds um ntmero
especifico de iteragoes.

o Aproximacgoes espurias?

As conclusoes tanto para o nimero de colisoes do problema de bilhar, quanto para o
numero de iteragoes do algoritmo de Grover, baseiam-se em aproximagoes. No primeiro caso,
que arctan r &~ x e, no segundo caso, que arcsin r &~ x, em ambos considerando x pequeno.

Nao obstante essas aproximacoes parecam bastante razoaveis, o problema aqui nao ¢é
tao simples. Isso porque nés estamos lidando com truncamentos da parte inteira de niimeros
reais, assim, uma pequena flutuagdo numa longinqua casa decimal é suficiente para alterar o
nosso resultado. Uma vez que essas aproximagoes sejam boas, as flutuagoes advindas desse
truncamento nao diferirao por mais que 1 do resultado “exato”. Mas isso ainda nos é um
problema, pois se 0 nosso objetivo é contar exatamente o niimero de colisoes (ou iteragoes) do
sistema, errar por £1 significa errar completamente!

Consideremos M/m = N/n = 100 (com d # 0). Para garantir nosso acerto, devemos
assegurar que as relagoes das Egs. (30) e (31) sejam verdadeiras,

{arctanﬂ(lO—d)J - {J—dJ ; (30)

s 1 T 1
U P o
2 arcsin (10~9) 210
Assim como Galerin, somos fortemente inclinados a acreditar que estas relagdes sdo ver-
dadeiras, embora nao sejamos capazes de prova-las. Este é um problema ainda em aberto na
matematica e, segundo Galperin, a melhor referéncia para tentar entendé-lo é a do matematico
Alfred van der Poorten, que pode se encontrada na Ref. (13).
No entanto, a crenga nos resultados (30) e (31) ndo é cega. Ela se fundamenta nos
resultados (32) e (33), que sao passiveis de prova, como as feitas na Ref.(3).

arctan (10~9) 10—

(32)

{arcta;r (1/d)J - L?/TdJ ' (33)

24



A extensao destes para arcsin pode ser feita seguindo os mesmos passos l6gicos na prova
de Galperin. Ainda que isso nao seja satisfatorio para fazer-nos confiar nos resultados das Eqs.
(30) e (31), aqui vai um argumento derradeiro: neste caso, as aproximagoes arctanz ~ x e
arcsinx &~ x podem ser um problema se dentre os 2d primeiros digitos de 7 nés tivermos uma
cadeia de d nimeros 9 em sequéncia (3), o que parece ser uma coisa bastante dificil de acontecer.
Por exemplo, nos primeiros 100 milhoes de digitos de 7, a maior cadeia de 9s que aparece tem
tamanho oito, mas precisariamos de uma cadeia de tamanho 50 milhdes para possivelmente
violar as igualdades nas Eqs. (30) e (31), o que soa bastante improvéavel de acontecer(3, 6).

Essa area em si envolve tantos conceitos complexos e pode desenrolar tantas discussoes
que mereceria um trabalho completo apenas dedicado a ela.

¢ Revisao do resultado de Adam Brown

Em seu artigo (5), Adam Brown utilizou como férmula de contagem das iteracoes de
s
Grover, no caso de n = 1, a relacao: Ll N — 1J, que difere da que ndés encontramos na

Eq.(28) por um fator 1/2, o qual nés consideramos ser relevante. Como discutimos na Sec.4.1,
esse fator equivale a comegar a contagem a partir de uma primeira (semi-)colisdo no sistema de
bilhar, e isso faz diferenga na contagem final. Isso porque, ainda que para valores de N grande,

T 0
as partes Ll N — 1J e Ll\/ N J das nossas expressoes equivalham, se o niimero real dentro

de | | tiver o primeiro digito apés a virgula menor ou igual 4, o resultado final das contagens
nossa e do Brown diferird. Por exemplo, consideremos o caso N = 100%, em que as nossas
expressoes, excluindo o fator 1/2, deem ambas [785,4...|; subtrair 1/2 desse valor, muda-o
para |784,9...] = 784, alterando o resultado da contagem.

5 Conclusao

Honestamente, o método de bilhar nao é nem de longe o melhor para se calcular 7, ele nao
so assume condigoes extremamente idealizadas, tornando-o fisicamente impraticavel, como leva
tempos absurdos para ser processado por um algoritmo computacional iterativo. Da mesma
forma, nao seria nada pratico processar o algoritmo de Grover utilizando este sistema. Ainda
assim, ¢ encantador como de um problema aparentemente tao simples, conseguimos desdobrar
discussoes tdo profundas, de algoritmos quénticos a teoria de nimeros. Como disse Adam
Brown: “Utilizar este sistema de bilhar para processar o algoritmo de Grover nao seria nem
facil e nem util, mas seria um jeito pitoresco de procurar = em meio aos [1)” (5).
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